MME 3514 MATERIALS THERMODYNAMICS

Chemical Reaction Equilibria Continued

Partial oxygen pressure grid lines

Ellingham diagram offers a simple and useful way to estimate equilibrium oxygen pressures as a function of temperature

For constant P_{02} values, ΔG^{o} vs T is represented by straight lines with $\mathrm{R} \ln P_{O 2}$ slope and $\Delta G^{o}=0$ intercept

The intersections of the constant oxygen partial pressure lines and the $\mathrm{X}-\mathrm{XO}_{2}$ equilibirum line give the equilibrium oxygen partial pressures for this reaction at various temperatures

Carbon is extensively used in materials processing
The two oxides of carbon, CO and CO_{2} are both gaseous species and it is important to know how they are distributed in an environment containing these gases

Ellingham for the oxides yield another line that represent the equilibirum between CO and CO_{2} :

Reduction of metal oxides in industrial practice involves both carbon and CO as the reducing agent since carbon in solid state does not promote high reduction rates due to small contact area with the metal oxide

For example hematite is in contact with carbon in oxygen blast furnace and reacts as:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s})=2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g})
$$

This reaction proceeds slowly and the main reduction reaction occurs by CO:

$$
\begin{gathered}
3 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})=2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})=3 \mathrm{FeO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \\
\mathrm{FeO}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g})=\mathrm{Fe}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
\end{gathered}
$$

Consider the oxidation of iron, as represented in the Ellingham diagram

$$
\begin{gathered}
2 \mathrm{Fe}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{FeO}(\mathrm{~s}), \quad \Delta G^{o}=R T \ln P_{O 2} \\
2 \mathrm{CO}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta G^{o}=-R T \ln \frac{P_{\mathrm{CO2}}}{P^{2}{ }_{C O} P_{O 2}}
\end{gathered}
$$

At equilibrium temperature both reactions are in equilibrium with the same partial oxygen pressure
The net reaction is $2 \mathrm{Fe}(\mathrm{s})+2 \mathrm{CO}_{2}(\mathrm{~g})=2 \mathrm{FeO}(\mathrm{s})+2 \mathrm{CO}(\mathrm{s}), \Delta G^{o}=\Delta G^{o}{ }_{F e-C O}=-R T \ln \frac{P^{2} c o z}{P^{2} c o}$

$$
\Delta G^{o}{ }_{F e}=\Delta G^{o}{ }_{C O}-2 R T \ln \frac{P_{C O 2}}{P_{C O}}
$$

$\mathrm{CO} / \mathrm{CO}_{2}$ grid lines can be related to the oxygen partial pressure in a system using the $\mathrm{CO}-\mathrm{CO}_{2}-\mathrm{O}_{2}$ equilibrium

$$
\begin{gathered}
\Delta G^{o}=-\mathrm{RT} \ln \frac{P^{2} \frac{C O 2}{P_{C o} P_{O 2}}}{} \\
\Delta G^{o}=\mathrm{RT} \ln P_{O 2}-2 \mathrm{RT} \ln \frac{P_{C O 2}}{P_{C O}}
\end{gathered}
$$

Partial pressure of oxygen is converted to the ratio of CO and CO_{2} gases as

$$
\begin{gathered}
\mathrm{RT} \ln P_{O 2}=\Delta G^{o}-2 \mathrm{RT} \ln \frac{P_{C O}}{P_{C O 2}} \\
\Delta G^{o}=-565110+173.72 \mathrm{~T} \mathrm{~J} \\
\mathrm{RT} \ln P_{O 2}=-565110+\left(173.72-2 \mathrm{R} \ln \frac{P_{C O}}{P_{C O 2}}\right) T
\end{gathered}
$$

Constant $\mathrm{CO} / \mathrm{CO}_{2}$ ratios fall on straight lines on Ellingham diagram since $\mathrm{RT} \ln \mathrm{P}_{\mathrm{O} 2}$ is the ordinate:

Intercept at -565110 Joules and slopes of $173.72-2 \mathrm{R} \ln \left(\mathrm{P}_{\mathrm{co}} / \mathrm{P}_{\mathrm{co}}\right)$

$P_{\mathrm{CO}} / \mathrm{P}_{\mathrm{CO} 2}$ is constant along a straight line that passes through -565 kJ at 0 K and can be read from the ratio scale

At the intersection of the $\mathrm{CO} / \mathrm{CO}_{2}$ lines with a metal oxidation line, all metal $\mathrm{X}, \mathrm{XO}_{2}$, $\mathrm{O}_{2}, \mathrm{CO}$ and CO_{2} coexist at equilibrium

The metal is reduced by CO at higher $\mathrm{P}_{\mathrm{CO} / \mathrm{CO2}}$ than the equilibrium ratio At lower ratios CO_{2} is reduced while metal oxide forms

Example - What is the equilibrium $\mathrm{P}_{\mathrm{Co} / \mathrm{Co2}}$ for CO to reduce MnO at 1000 C ?

$$
\begin{array}{rlrl}
2 M n(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) & =2 M n O(\mathrm{~s}), & \Delta G^{o}{ }_{1273}=-140 \mathrm{kcal} \\
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g}), & \Delta G^{o}{ }_{1273}=-82 \mathrm{kcal}
\end{array}
$$

The oxygen partial pressure for the Mn oxidation reaction at equilibrium is calculated as

$$
\begin{gathered}
\Delta G^{o}=R T \ln P_{O 2} \\
-140000=1.987154 * 1273 * \ln P_{O 2} \\
P_{O 2}=10^{-24} \mathrm{~atm}
\end{gathered}
$$

The free energy change for the carbon oxidation reaction is used to calculate $\mathrm{P}_{\mathrm{CO} / \mathrm{cO}}$

$$
\begin{gathered}
\Delta G^{o}=-R T \ln \frac{P^{2}{ }_{c o 2}}{P_{c o}^{2} P_{O 2}} \\
-82000=-1.987154 * 1273 * \ln \frac{P_{c o 2}^{2}}{P_{C O}^{2} * 10^{-24}} \\
\frac{P_{C O}}{P_{C O 2}}=10^{5}
\end{gathered}
$$

$\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ grid lines
In industrial processes involving H_{2} as the reducing agent, the equilibrium between hydrogen and water should be taken into account as well as the equilibrium between metal and metal oxide

$$
\begin{aligned}
& 2 X(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=2 X O(\mathrm{~s}), \quad \Delta G^{o}{ }_{X} \\
& 2 \mathrm{XO}(\mathrm{~s}) \frac{2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta G^{o}{ }_{\mathrm{H}}}{+2 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{X}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta G^{o}{ }_{H}}-\Delta G^{o}{ }_{X}
\end{aligned}
$$

At equilibrium temperature both reactions are in equilibrium with the same partial oxygen pressure

$$
\begin{gathered}
\Delta G_{X}^{o}=R T \ln P_{O 2} \\
\Delta G_{H}^{o}=-R T \ln \frac{P^{2}{ }_{H 2 O}}{P_{H 2}^{2} P_{O 2}}=R T \ln P_{O 2}+2 R T \ln \frac{P_{H 2}}{P_{H 2 O}}=\Delta G_{X}^{o}+2 R T \ln \frac{P_{H 2}}{P_{H 2 O}}
\end{gathered}
$$

The net reaction is

$$
\Delta G^{o}{ }_{X}=\Delta G^{o}{ }_{H}-2 R T \ln \frac{P_{H 2}}{P_{H 2 O}}
$$

$\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ grid lines can be related to the oxygen partial pressure in a system using the $\mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{O}-\mathrm{O}_{2}$ equilibrium

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \quad \Delta G^{o}=-492887+109.62 \mathrm{JJ} \\
\Delta G^{o}=-\mathrm{RT} \ln \frac{P^{2}{ }_{H 2 O}}{P^{2}{ }_{H 2} P_{O 2}} \\
\Delta G^{o}=\mathrm{RT} \ln P_{O 2}-2 \mathrm{RT} \ln \frac{P_{H 2 O}}{P_{H 2}}
\end{gathered}
$$

Partial pressure of oxygen is converted to the ratio of H_{2} and $\mathrm{H}_{2} \mathrm{O}$ gases as

$$
\begin{gathered}
\mathrm{RT} \ln P_{O 2}=\Delta G^{o}-2 \mathrm{RT} \ln \frac{P_{H 2}}{P_{H 2 O}} \\
\Delta G^{o}=-492887+109.62 \mathrm{~T} \mathrm{~J} \\
\mathrm{RT} \ln P_{O 2}=-492887+\left(109.62-2 \mathrm{R} \ln \frac{P_{H 2}}{P_{H 2 O}}\right) T
\end{gathered}
$$

Constant $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{O}$ ratios fall on straight lines on Ellingham diagram since $\mathrm{RT} \operatorname{lnP} \mathrm{O}_{2}$ is the ordinate:

Intercept at -492887 Joules and slopes of $109.62-2 \mathrm{R} \ln \left(\mathrm{P}_{\mathrm{H} 2} / \mathrm{P}_{\mathrm{H} 2 \mathrm{O}}\right)$
$\frac{P_{\mathrm{H} 2}}{P_{\mathrm{H} 2 \mathrm{O}}}$ is constant along a straight line that passes through -492387 J at 0 K and can be read from the scale on the far right of the Ellingham diagram

At the intersection of the $\mathrm{H} 2 / \mathrm{H}_{2} \mathrm{O}$ lines with a metal oxidation line, all metal $\mathrm{X}, \mathrm{XO}_{2}, \mathrm{O}_{2}$, H_{2} and $\mathrm{H}_{2} \mathrm{O}$ coexist at equilibrium

The metal is reduced by H_{2} at higher $\mathrm{P}_{\mathrm{H} 2 / \mathrm{H} 2 \mathrm{O}}$ than the equilibrium ratio

At lower ratios $\mathrm{H}_{2} \mathrm{O}$ is reduced while metal oxide forms
$\mathrm{P}_{\mathrm{H} 2 / \mathrm{H} 2 \mathrm{O}}$

Example - What is the equilibrium $\mathrm{P}_{\mathrm{H} 2 \mathrm{H} 2 \mathrm{O}}$ for H_{2} to reduce TiO_{2} at 1600 C ?

$$
\begin{array}{cc}
\mathrm{Ti}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{TiO}_{2}(\mathrm{~s}), & \Delta G^{o}{ }_{1873}=-136 \mathrm{kcal} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), & \Delta G^{o}{ }_{1873}=-68 \mathrm{kcal}
\end{array}
$$

The oxygen partial pressure for the Ti oxidation reaction at equilibrium is calculated as

$$
\begin{gathered}
\Delta G^{o}=R T \ln P_{O 2} \\
-136000=1.987154 * 1873 * \ln P_{O 2} \\
P_{O 2}=10^{-16} \mathrm{~atm}
\end{gathered}
$$

The free energy change for the hydrogen oxidation reaction is used to calculate $\mathrm{P}_{\mathrm{H} 2 / \mathrm{H} 2 \mathrm{O}}$

$$
\begin{gathered}
\Delta G^{o}=-R T \ln \frac{P_{H 2}^{2}}{P^{2}{ }_{H 2 O} P_{O 2}} \\
-68000=-136000+2 * 1.987154 * 1873 \ln \frac{P_{H 2}}{P_{H 2 O}} \\
\frac{P_{H 2}}{P_{H 2 O}}=10^{4}
\end{gathered}
$$

Sulfidation of metals

Sulphide ion has affinity for metal cations and many valuable metal ores are found in nature in sulphide forms

Economically important sulfides are Acanthite $\mathrm{Ag}_{2} \mathrm{~S}$, Chalcocite $\mathrm{Cu}_{2} \mathrm{~S}$, Bornite $\mathrm{Cu}_{5} \mathrm{FeS}_{4}$, Galena PbS, Sphalerite ZnS , Chalcopyrite CuFeS_{2}

Sulfidation reactions are in many ways thermodynamically similar to oxidation reactions
Sulphur in gaseous form can be considered the same with oxygen and the activity of metal sulfides can be taken as unity

$$
\begin{gathered}
2 \mathrm{Mn}(\mathrm{~s})+\mathrm{S}_{2}(\mathrm{~g})=2 \mathrm{MnS}(\mathrm{~s}) \\
\Delta G^{o}=R T \ln P_{S 2}
\end{gathered}
$$

The methods for calculation of the equilibrium partial sulphur pressure at a constant temperature are the same as finding the equilibrium partial oxygen pressure

Ellingham diagram showing the standard formation free energies of sulfides
The equilibrium partial pressure of S_{2} and the ratio of $\mathrm{P}_{\mathrm{H} 2 \mathrm{~S} / \mathrm{H}_{2}}$ can be determines graphically from the figure in the same wa as described previosly for oxygen, carbor hydrogen

Example - Determine the sulphur partial pressure in equilibrium with MnS at 700 C

$$
2 \mathrm{Mn}(\mathrm{~s})+\mathrm{S}_{2}(\mathrm{~g})=2 \mathrm{MnS}(\mathrm{~s}), \Delta G^{o}{ }_{973}=-41
$$

$$
\Delta G^{o}=R T \ln P_{S 2}=-410000=8.314 * 97
$$

$$
P_{S 2}=10^{-22}
$$

Reduction of metal sulphurs by H_{2}
Just as the metal oxides are reduced by hydrogen to form metal and $\mathrm{H}_{2} \mathrm{O}$, metal sulphides are reduced by hydrogen to form $\mathrm{H}_{2} \mathrm{~S}$ and metal

$$
\begin{gathered}
2 M n(\mathrm{~s})+\mathrm{S}_{2}(\mathrm{~g})=2 M n S(\mathrm{~s}), \quad \Delta G^{o}{ }_{M} \\
\frac{2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})=2 H_{2} S(\mathrm{~g}),}{\Delta G^{o}{ }_{H S}} \\
2 M n S(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})=2 M n(\mathrm{~s})+2 H_{2} S(g), \Delta G^{o}{ }_{H S}-\Delta G^{o}{ }_{M}
\end{gathered}
$$

At equilibrium temperature both reactions are in equilibrium with the same partial sulphur pressure

$$
\begin{gathered}
\Delta G^{o}{ }_{M}=R T \ln P_{S 2} \\
\Delta G_{H S}^{o}=-R T \ln \frac{P^{2}{ }_{H 2 S}}{P^{2}{ }_{H 2} P_{S 2}}=R T \ln P_{S 2}+2 R T \ln \frac{P_{H 2}}{P_{H 2 S}}=\Delta G^{o}{ }_{M}+2 R T \ln \frac{P_{H 2}}{P_{H 2 S}}
\end{gathered}
$$

The net reaction is

$$
\Delta G_{M}^{o}=\Delta G_{H S}^{o}-2 R T \ln \frac{P_{H 2}}{P_{H 2 S}}
$$

$\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{~S}$ grid lines can be related to the sulphur partial pressure in a system using the $\mathrm{H}_{2}-\mathrm{H}_{2} \mathrm{~S}-\mathrm{S}_{2}$ equilibrium

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})=2 H_{2} S(g), \quad \Delta G^{o}=-152900+99.37 T \mathrm{~J} \\
\Delta G^{o}=-\mathrm{RT} \ln \frac{P^{2}{ }_{H 2 S}}{P^{2}{ }_{H 2} P_{S 2}} \\
\Delta G^{o}=\mathrm{RT} \ln P_{S 2}-2 \mathrm{RT} \ln \frac{P_{H 2 S}}{P_{H 2}}
\end{gathered}
$$

Partial pressure of sulphur is converted to the ratio of H_{2} and $\mathrm{H}_{2} \mathrm{~S}$ gases as

$$
\begin{gathered}
\mathrm{RT} \ln P_{S 2}=\Delta G^{o}-2 \mathrm{RT} \ln \frac{P_{H 2}}{P_{H 2 S}} \\
\mathrm{RT} \ln P_{S 2}=-152900+\left(99.37-2 \mathrm{R} \ln \frac{P_{H 2}}{P_{H 2 S}}\right) T
\end{gathered}
$$

Constant $\mathrm{H}_{2} / \mathrm{H}_{2} \mathrm{~S}$ ratios fall on straight lines on Ellingham diagram since $\mathrm{RT} \ln \mathrm{P}_{\mathrm{S} 2}$ is the ordinate:

Intercept at -152900 Joules and slopes of $99.37-2 \mathrm{R} \ln \left(\mathrm{P}_{\mathrm{H} 2} / \mathrm{P}_{\mathrm{H} 2 \mathrm{~S}}\right)$

Example - What is the equilibrium $\mathrm{P}_{\mathrm{H} 2 / \mathrm{H} 2 \mathrm{~S}}$ for H_{2} to reduce MnS at 700 C ?

$$
\begin{aligned}
& 2 M n(\mathrm{~s})+\mathrm{S}_{2}(\mathrm{~g})=2 M n S(\mathrm{~s}) \\
& \Delta G^{o}{ }_{M n}=-410000 J=R T \ln P_{S 2} \\
& P_{S 2}=10^{-22} \mathrm{~atm} \\
& \mathrm{RT} \ln P_{S 2}=-152900+\left(99.37-2 \mathrm{R} \ln \frac{P_{H 2}}{P_{H 2 S}}\right) 973 \\
& \frac{P_{H 2}}{P_{H 2 S}}=10^{-9}
\end{aligned}
$$

MnS is reduced to Mn at $\frac{P_{\mathrm{H} 2}}{P_{\mathrm{H} 2 \mathrm{~S}}}>10^{-9}$

Determining the composition of reaction system under equilibrium

$$
a A(g)+b B(g)+e E(g) \rightarrow c C(g)+d D(g)+e E(g)
$$

Consider the reacting A, B and inert E to produce C and D and inert E

$$
K=\frac{P_{C}{ }^{c} P_{D}^{d}}{P_{A}{ }^{a} P_{B}{ }^{b}}
$$

The partial pressures of the components are expressed as a function of the total P:

$$
P_{A}=\frac{n_{A} \cdot P}{n_{A}+n_{B}+n_{C}+n_{D}+n_{E}}
$$

where n_{A} is the mole number of A under equilibrium
Equilibrium constant can be represented as

$$
K=\frac{n_{C}{ }^{c} n_{D}{ }^{d}}{n_{A}{ }^{a} n_{B}{ }^{b}} *\left(\frac{P}{n_{A}+n_{B}+n_{C}+n_{D}+n_{E}}\right)^{(c+d)-(a+b)}
$$

Suppose the reaction reaches equilibirum after a while and x fraction of A is converted to products
Then
$n_{A}=$ Fraction of unreacted $\mathrm{A}=(1-x) a$
$n_{B}=$ Fraction of unreacted $\mathrm{B}=(1-x) b$
$n_{C}=$ Fraction of formed $\mathrm{C}=x . c$
$n_{D}=$ Fraction of formed $\mathrm{D}=x . d$
$n_{E}=$ Fraction of inert E in the system $=e$
and

$$
K=\frac{(x . c)^{c}(x . d)^{d}}{(a-a x)^{a}(b-b x)^{b}} *\left(\frac{P}{(1-x)(a+b)+x(c+d)+e}\right)^{(c+d)-(a+b)}
$$

If equilibrium temperature and the standard free energy change at that temperature are given, the fraction x can be conveniently determined since

$$
\begin{gathered}
\Delta G=\Delta G^{o}+R T_{\text {eqm }} \ln K=0 \\
\Delta G^{o}=-R T_{e q m} \ln \left[\frac{(x \cdot c)^{c}(x \cdot d)^{d}}{(a-a x)^{a}(b-b x)^{b}} *\left(\frac{P}{(1-x)(a+b)+x(c+d)+e}\right)^{(c+d)-(a+b)}\right]
\end{gathered}
$$

Example - Solid ZnO is reduced by CO gas at 1027 C to produce CO_{2} and Zn gas. Reduction retort is filled with CO gas and atmospheric pressure is maintained by a small opening: $\quad \mathrm{ZnO}(s)+\mathrm{CO}(g)=\mathrm{Zn}(g)+\mathrm{CO}_{2}(g) @ 1027 \mathrm{C}, 1 \mathrm{~atm}$

The reaction consists of 3 separafémereactions occurîng sîmultañeously

$$
\begin{array}{cc}
2 \mathrm{ZnO}(s)=2 \mathrm{Zn}(g)+\mathrm{O}_{2}(g), & \Delta G^{o}=230840+20.7 T \log T-164.8 T \\
2 \mathrm{C}(s)+2 \mathrm{O}_{2}(g)=2 \mathrm{CO}_{2}(g), & \Delta G^{o}=-188400-0.4 T \\
2 \mathrm{CO}(g)=2 \mathrm{C}(s)+\mathrm{O}_{2}(g), & \Delta G^{o}=53400+41.9 T \\
2 \mathrm{ZnO}(s)+2 \mathrm{CO}(g)=2 \mathrm{Zn}(g)+2 \mathrm{CO}_{2}(g), & \Delta G^{o}=95840+20.7 T l o g T-123.3 T \\
\mathrm{ZnO}(\mathrm{~s})+\mathrm{CO}(g)=\mathrm{Zn}(g)+\mathrm{CO}_{2}(g), & \Delta G^{o}=47920+10.35 \mathrm{TlogT}-61.65 \mathrm{~T} \text { cal } / \mathrm{mole}
\end{array}
$$

The reaction constant at equilibrium temperature 1300 K is obtained as

$$
\ln K=-\frac{\Delta G^{o}}{R T_{e q m}}=-\frac{9700 \mathrm{cal}}{1.987154 \frac{\mathrm{cal}}{K} \cdot 1300 K}=-2.35
$$

$$
K=0.0224
$$

The initial mole number of gaseous $\mathrm{ZnO}=0$, final mole number $=0$
The initial mole number of gaseous $\mathrm{CO}=1$, final mole number $=1-\mathrm{x}$
The initial mole number of gaseous $\mathrm{Zn}=0$, final mole number $=x$
The initial mole number of gaseous $\mathrm{CO}_{2}=0$, final mole number $=x$

$$
\begin{gathered}
K=\left[\frac{x^{2}}{(1-x)} *\left(\frac{1}{(1-x)+2 x}\right)^{1}\right]=0.0224 \\
x=0.15
\end{gathered}
$$

The reaction is completed by 15% at equilibrium
0.15 moles CO_{2}
0.85 moles CO
0.15 moles Zn

Total $=1.15$ moles
$13 \% \mathrm{CO}_{2}$
74\% CO
13% Zn

Example - Reduction of solid ZnO by methane gas is another industrial Zn production process: $\mathrm{ZnO}(\mathrm{s})+\mathrm{CH}_{4}(\mathrm{~g})=\mathrm{Zn}(\mathrm{g})+\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2} @ 827 \mathrm{C}, 1 \mathrm{~atm}$ $\Delta G^{o}=114303-12.93 T \ln T+0.00035 T^{2}-0.00000088 T^{3}-10.53 T \mathrm{cal} / \mathrm{mole}$

There are 1 mole of ZnO and CH_{4} at the beginning of the reaction
The free energy of the reaction at the equilibrium temperature 1100 K is

$$
\begin{gathered}
\Delta G^{o}=1470 \text { calories } \\
\ln K=-\frac{\Delta G^{o}}{R T_{\text {eqm }}}=-\frac{1470 \mathrm{cal}}{1.987156 \frac{\mathrm{cal}}{\mathrm{~K}} \cdot 1100 \mathrm{~K}}=-0.673 \\
K=0.51 \\
K=\frac{P_{Z n} P_{C O} P_{H 2}^{2}}{P_{C H 4}} \\
0.51 P_{C H 4}=P_{Z n} . \quad P_{C o} . P_{H 2}{ }^{2}
\end{gathered}
$$

$$
0.51 P_{C H 4}=P_{Z n} . \quad P_{C O} . \quad P_{H 2}^{2}
$$

Since the system pressure is constant at 1 atm,

$$
P_{C H 4}+P_{Z n}+P_{C O}+P_{H 2}=1 \mathrm{~atm}
$$

The ratio of the partial pressures of the products at equilibrium is

$$
P_{Z n} / P_{C O} / P_{H 2}=1 / 1 / 2
$$

With three equations at hand relating 4 variables, it is possible to calculate the concentration of the products if the equilibrium partial pressure of methane is given the value x
The initial mole number of gaseous $\mathrm{ZnO}=0$, final mole number $=0$ The initial mole number of gaseous $\mathrm{CH}_{4}=1$, final mole number $=x$ The initial mole number of gaseous $\mathrm{Zn}=0$, final mole number $=1 / 4(1-x)$ The initial mole number of gaseous $\mathrm{CO}=0$, final mole number $=1 / 4(1-x)$ The initial mole number of gaseous $\mathrm{H}_{2}=0$, final mole number $=1 / 2(1-x)$

$$
K=\frac{\left(1 / 4(1-x) \cdot \frac{1}{4}(1-x) \cdot\left(\frac{1}{2}(1-x)\right)^{2} \cdot 2^{2}\right.}{x} *\left(\frac{1}{x+\frac{1}{4}(1-x)+\frac{1}{4}(1-x)+\frac{1}{2}(1-x)}\right)^{3}
$$

$$
x=0.0275
$$

The partial pressures of the gaseous components of the system are thus calculated as

$$
\begin{gathered}
P_{C H 4}=0.0275 \mathrm{~atm} \\
P_{Z n}=\frac{1}{4}(1-0.0275)=0.2431 \mathrm{~atm} \\
P_{C O}=\frac{1}{4}(1-0.0275)=0.2431 \mathrm{~atm} \\
P_{H 2}=\frac{1}{2}(1-0.0275)=0.4862 \mathrm{~atm}
\end{gathered}
$$

0.0275 moles of ZnO residue is present in the system at equilibrium

Homework Example - A zinc production plant uses $\mathrm{CO}-\mathrm{CO}_{2}$ gas mixture that is obtained by combusting coal to reduce ZnO . Engineers are asked to calculate the amount of equilibrium CO gas that has to be rejected to the atmosphere for each mole of CO_{2} produced. Comment on the feasibility of the process in the case of reduction with a) cold gases at 27 C, b)hot gases at 1027 C Hint: Boiling point of Zn is 908 C

